你可知原子吸收分光光度計的發(fā)展歷史么?下面就讓我們一起來了解一下吧。
1802年烏拉斯登(W.H.Wollaston)發(fā)現太陽連續(xù)光譜中存在許多暗線。
1814年夫勞霍弗(J.Fraunhofer)再次觀察到這些暗線,但無法解釋,將這些暗線稱為夫勞霍弗暗線。
1820年布魯斯特(D.Brewster)解釋了這些暗線是由太陽外圍大氣圈對太陽光吸收而產生。
1860年克希霍夫(G.Kirchoff)和本生(R.Bunsen)根據鈉(Na)發(fā)射線和夫勞霍弗暗線的光譜中的位置相同這一事實,證明太陽連續(xù)光譜中的暗線D線,是太陽外圍大氣圈中的Na原子對太陽光譜在Na輻射吸收的結果;并進一步闡明了吸收與發(fā)射的關系--氣態(tài)的原子能發(fā)射某些特征譜線,也能吸收同樣波長的這些譜線。這是歷*用原子吸收光譜進行定性分析的例證。
很長一段時間,原子吸收主要局限于天體物理方面的研究,在分析化學中的應用未能引起重視,其主要原因是未找到可產生銳線光譜的光源。
1916年帕邢(Paschen)首先研制成功空心陰極燈,可作為原子吸收分析用光源。
直至20世紀30年代,由于汞的廣泛應用,對大氣中微量汞的測定曾利用原子吸收光譜原理設計了測汞儀,這是原子吸收在分析中的早應用。
1954年澳大利亞墨爾本物理研究所在展覽會上展出世界上*原子吸收分光光度計??招年帢O燈的使用,使原子吸收分光光度計商品儀器得到了發(fā)展。
1955年澳大利亞聯(lián)邦科學與工業(yè)研究所物理學家沃爾什(A.Walsh)首先提出原子吸收光譜作為一般分析方法用于分析各元素的可能性,并探討了原子濃度與吸光度值之間的關系及實驗中的有關問題。然后在光譜化學學報上發(fā)表了著名論文《原子吸收光譜在分析上的應用》。從此一些國家的科學家競相開展這方面的研究,并取得了巨大的進展。
隨著科學技術的發(fā)展,原子能、半導體、無線電電子學、宇宙航行等科學對材料純度要求越來越高,如原子能材料鈾、釷、鈹、鋯等,要求雜質小于10~10g,半導體材料鍺、硒中雜質要求低于 10~ 10g,熱核反應結構材料中雜質需低于10g,上述材料的純度要求用傳統(tǒng)分析手段是達不到的,而原子吸收分析能較好地滿足超純分析的要求。
1959年前蘇聯(lián)學者里沃夫(В.B.ПьBOB)設計出石墨爐原子化器,1960年提出了電熱原子化法(即非火焰原子吸收法),使原子吸收分析的靈敏度有了提高。
1965年威尼斯(J.B.Willis)將氧化亞氮-乙炔火焰用于原子吸收法中,使可測定元素數目增至70個。
1967年馬斯曼(H.Massmann)對里沃夫石墨爐進行改進,設計出電熱石墨爐原子化器(即高溫石墨爐)。
20世紀60年代后期發(fā)展了"間接原子吸收分光光度法",使過去難以用直接法測定的元素和有機化合物的測定有了可能。
1971年美國瓦里安(Varian)公司生產出世界上*縱向加熱石墨爐,并首先發(fā)展Zeemen背景校正技術。
1981年原子吸收分析儀實現操作自動化。
1984年*連續(xù)氫化物發(fā)生器問世。
1990年推出世界上先進的Mark V1焰燃燒頭。
1995年在線火焰自動進樣器(SIPS8)研制成功并投入使用。
1998年*快速分析火焰原子吸收220FS誕生。
2002年世界上首套火焰和石墨爐同時分析的原子吸收光譜儀生產并投放市場。
現在,原子吸收分光光度計采用新的電子技術,使儀器顯示數字化、進樣自動化,計算機數據處理系統(tǒng)使整個分析實現自動化。